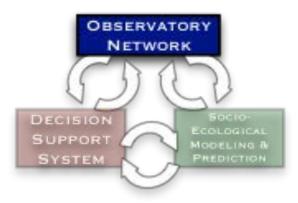
Signal, Noise, and Recognition: Changing Weather Patterns in Oklahoma

Hank Jenkins-Smith, Carol Silva, and Joseph Ripberger National Institute for Risk and Resilience University of Oklahoma

What do we Know about Public Recognition of the Changing Climate?

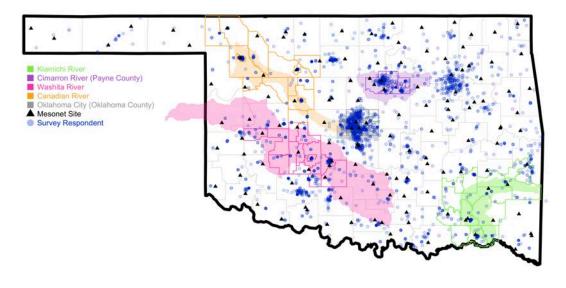
- Discussion of *climate change* is highly charged and affected by politically motivated reasoning (PMR)
- Identity protective mechanisms undermine both collective policy discussion and individual-level actions to address climate change
 - Non-identity contexts appear to be less affected by PMR
- But do identity protective mechanisms preclude accurate recognition of changing climate patterns?
 - Current studies, based on cross-sectional data, suggest that PMR has undermined citizens' abilities to perceive climate "signals"
- The Oklahoma Observatory, and the M-SISNet survey, were designed to provide a better test of citizens capacities to recognize and act on local climate variability

HISTORY OF THE M-SISNET


Ecological/Weather/Climate Data

- Current resources/infrastructure in OK
 - Oklahoma MESONET
 - NOAA presence
- Building Additional Infrastructure & Measurement Capabilities
 - Remote sensing
 - Ground water monitoring
 - Soil moisture monitoring
 - Stream flow monitoring

Social/Behavioral Data

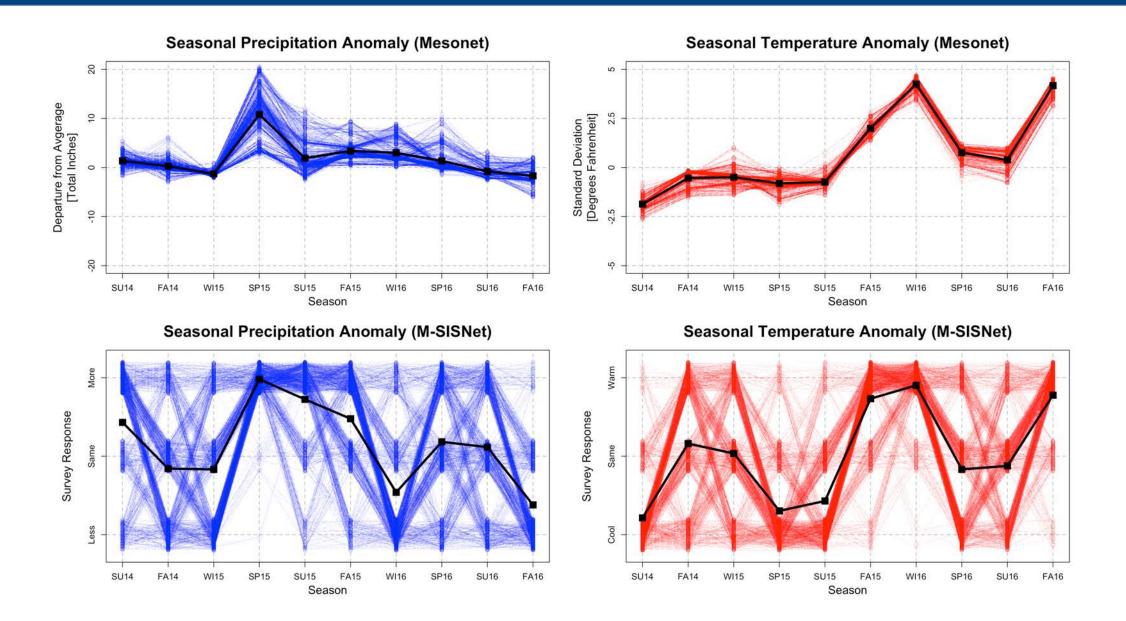

- Decades Behind
- · No systematic time series data
 - Perceptions
 - Behaviors, decisions
- No data \rightarrow No model input
- Infrastructure investment
 - Build the socio-ecological observatory
 - Collect the empirical data

BUILDING THE M-SISNET

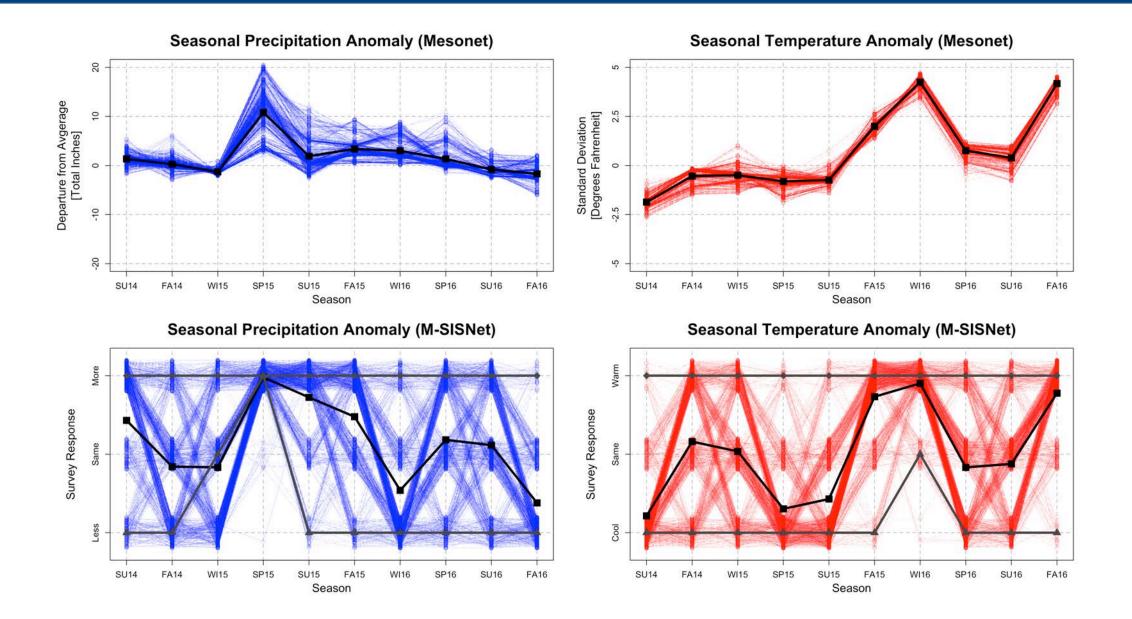
The Meso-Scale Integrated Socio-geographic Net

- Five year panel survey of 2,500+ households in OK
 - Address based random sample
- Spatially and temporally integrated with the OK MESONET
- Measure perceptions about weather and climate and behaviors related to energy, land, and water usage
 - To date, we have interviewed 3,999 different Oklahomans, who completed a total of 27,296 surveys, and answered more than 700 different questions
- Developed the infrastructure to design surveys with collaborators, administer surveys on phone and web platforms, and distribute data to participants and researchers

Data: <u>http://crcm.ou.edu/epscordata/</u>


MOTIVATING RESEARCH QUESTIONS

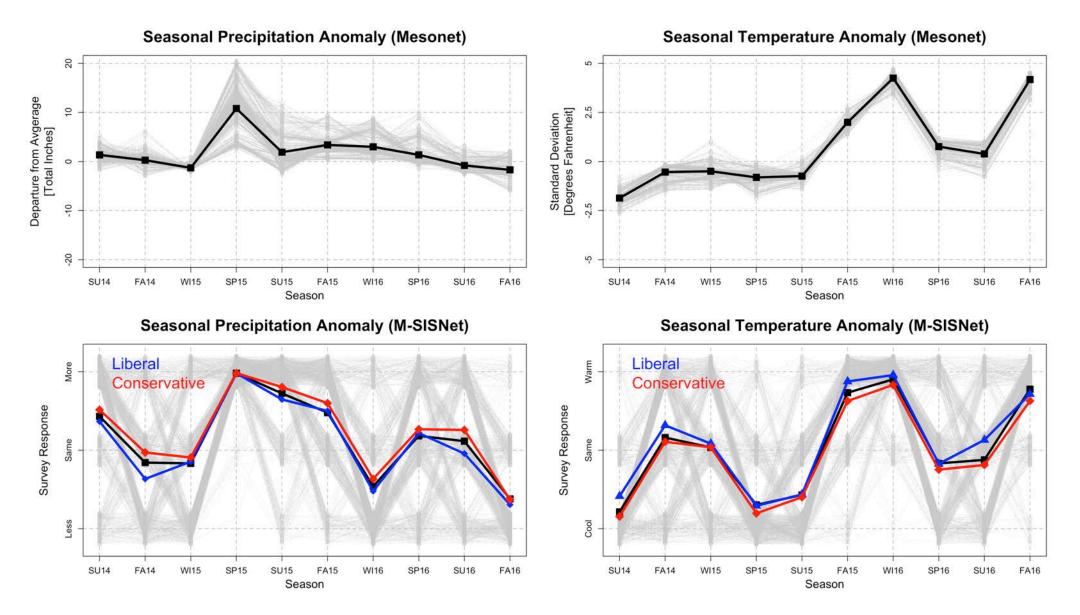
- 1. Do residents of Oklahoma <u>recognize</u> weather/climate anomalies?
- 2. What factors interrupt or facilitate recognition?
 - a) Strength of the signal
 - b) Clarity of the signal
 - c) Exposure to the signal
 - d) Heuristics & biases (motivated cognition)
- MESONET DATA:
 - Departure from 15-year average daily precipitation (RAIN) by {SEASON} & {RESPONDENT}
 - Departure from 15-year average daily temperature (TAVG) by {SEASON} & {RESPONDENT}
- M-SISNet DATA:
 - In the area around where you live, would you say that the amount of precipitation that fell this {SEASON} was more, less, or about the same amount as in previous {SEASON}s?
 - In the area around where you live, would you say that this {SEASON} has been warmer, cooler, or about the same as previous {SEASON}s?


RECOGNITION OF CLIMATE ANOMALIES: DATA

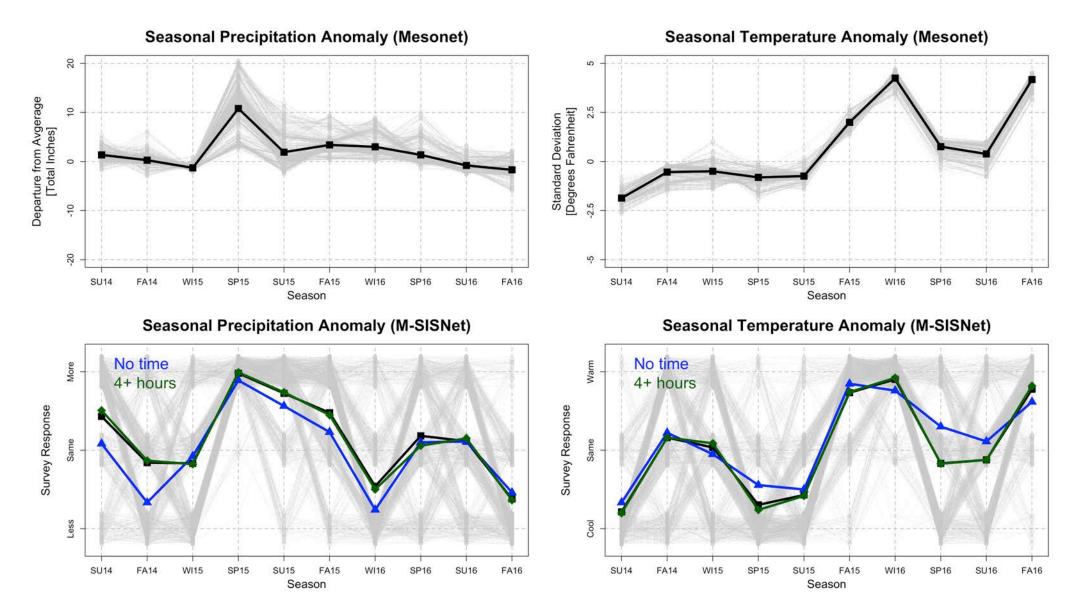
Seasonal Precipitation Anomaly (Mesonet) Seasonal Temperature Anomaly (Mesonet) 20 5 Departure from Avgerage [Total Inches] 10 2.5 Standard Deviation [Degrees Fahrenheit] 0 0 -2.5 -10 -20 ŝ SU14 FA14 WI15 SP15 SU15 FA15 WI16 SP16 SU16 FA16 SU14 **FA14** WI15 SP15 SU15 FA15 WI16 SP16 SU16 FA16 Season Season Seasonal Temperature Anomaly (M-SISNet) Seasonal Precipitation Anomaly (M-SISNet) Warm More Survey Response Survey Response Same Less Cool SU14 **FA14** WI15 **SP15** SU15 **FA15** WI16 **SP16 SU16** FA16 **SU14 FA14** WI15 **SP15 SU15 FA15** WI16 **SP16** SU16 **FA16** Season Season

RECOGNITION OF CLIMATE ANOMALIES: AVERAGE

RECOGNITION OF CLIMATE ANOMALIES: BIAS?


RECOGNITION OF CLIMATE ANOMALIES: MODELS

	Explaining Aggregate Perceptions		Explaining Directional Deviations		Explaining Non-Directional Accuracy	
	Dependent variable:					
	ssn_precip panel linear (1)	ssn_tmp panel linear (2)	fe_precip OLS (3)	fe_tmp OLS (4)	abs(fe_precip) OLS (5)	abs(fe_tmp) OLS (6)
<pre>z.ssn_precip_15yr_depart z.ssn_precip_15yr_depart z.ssn_tmp_15yr_depart z.ssn_tmp_15yr_depart z.ssn_tmp_15yr_depart:z.ssn_tmp_sd z.ideol.imp z.H_rate.imp z.I_rate.imp z.F_rate.imp z.E_rate.imp factor(time_outside2)1 factor(time_outside2)3 ranch_farm2 home_lot2 Constant</pre>	1.28*** (0.06) -0.33*** (0.03)	1.57*** (0.07) -0.34*** (0.05)	0.04* (0.02) 0.02 (0.02) -0.02 (0.02) -0.03 (0.02) -0.06** (0.02) 0.09** (0.04) 0.01 (0.04)	-0.06*** (0.02) 0.01 (0.02) -0.03* (0.02) 0.03** (0.02) 0.06*** (0.02) -0.04 (0.03) 0.05 (0.03)	-0.06 (0.03) -0.07* (0.04) 0.06** (0.02) -0.02* (0.01) 0.31*** (0.03)	-0.07** (0.03) -0.07** (0.03) 0.003 (0.02) 0.01 (0.01) 0.26*** (0.03)
Observations R2 Adjusted R2 Residual Std. Error F Statistic	9,410 0.17 0.07 843.15*** (df = 2; 8467)	9,410 0.41 0.34 2,931.98*** (df = 2; 8467)	941 0.03 0.02 0.31 (df = 934) 4.29*** (df = 6; 934)	941 0.06 0.05 0.24 (df = 934) 9.68*** (df = 6; 934)	938 0.01 0.01 0.18 (df = 933) 2.30* (df = 4; 933)	


Note:

*p<0.1; **p<0.05; ***p<0.01

TO WHAT EXTENT DOES POLITICAL IDEOLOGY INFLUENCE WEATHER PATTERN PERCEPTIONS?

TO WHAT EXTENT DOES TIME SPENT OUTSIDE INFLUENCE WEATHER PATTERN PERCEPTIONS?

Public Perceptions are *Primarily* Grounded in Actual Weather Patterns

- Panel data allow assessment of recognition of patterns of change, obscured by cross-sectional data
- Changing weather patterns predict changes in perceived threats posed by climate change
 - Deviations from long-term patterns toward hotter and drier seasons predict greater perceived risks of climate change
- Perceived risks of climate change (modestly) predict changes in water use