

Progress and prospects for soil moisture monitoring and applications in Oklahoma and beyond

Tyson Ochsner Dep. of Plant and Soil Sciences Oklahoma State University

Presented at: Oklahoma NSF EPSCoR 2018 Annual State Conference April 24, 2018 Oklahoma City, Oklahoma

Soil Moisture Information in a Socio-ecological Context

People want soil moisture information

 Stakeholders in US Great Plains prefer soil moisture over all other drought indicators (Shafer and Quiring, 2016).

Preferred drought indices: Oklahoma

Preferred drought indices: Texas

Current soil moisture information is limited

- Exceptional spatial variability
- In-situ observations sparse
- Satellite observations shallow, low resolution

USDA ARS Watersheds

 Our primary focus is on enhanced multi-scale soil moisture monitoring and improved utilization of soil moisture observations in agriculture, ecology, hydrology, and related fields.

Briana Wyatt

Jingnuo Dong

Destiny Kerr

Erik Krueger

Jason Patton

EPSCoR-enabled* progress and prospects

- 1. *Comparing land surface vs. atmospheric controls on <u>meso-scale spatial patterns</u> of soil moisture
- *Developing and evaluating an operational, highresolution soil moisture <u>mapping system</u> for Oklahoma
- 3. Exploring uses of soil moisture information for:
 - Estimating potential groundwater recharge
 - Predicting wildfire danger
 - Monitoring agricultural drought/crop yield forecasting
 - Forecasting streamflow for surface water management and emergency responses
- 4. *Supporting broader impacts through the MOISST workshop

At what scales do atmospheric versus land surface factors dominate the spatial pattern of soil moisture?

- Cosmic-ray neutron method
- Large mobile neutron detector, the "rover"

Water Resources Research

Soil texture often exerts a stronger influence than precipitation on mesoscale soil moisture patterns

- High sand contents overlying the Cimarron River alluvial aquifer
- Soil moisture sand content, strong inverse correlation
- Soil moisture antecedent precipitation index (API), correlations were weaker and less stable

How effectively can we map dynamic soil moisture conditions statewide with existing information?

- Average of one in-situ measurement per 1680 km²
- Existing in-situ sensors have measurement volume of ~100 cm³

Delivering daily, 800-m resolution maps

HIGH PERFORMANCE COMPUTING CENTER

A unit in the Division of the Vice President for Research

Estimating potential recharge using soil moisture information

Statewide mean annual soil moisture-based drainage rates for the years 1998-2014. Drainage rate labels for the Stillwater, Oklahoma City East, Porter, and Marena sites were excluded for clarity, but were 214, 82, 166, and 66 mm yr⁻¹, respectively.

Wyatt et al. (2017) -- Vadose Zone Journal (link)

Predicting large growing season wildfires using soil moisture information

Fraction of available water capacity (FAW) for the 0-40, 40-80, and 0-80 cm soil layers as well as the Keetch-Byram Drought Index (KBDI) near Chester, Oklahoma in 2009. Also displayed is the 17,000 ha Chester wildfire that occurred near Chester, Oklahoma on 10 July, 2009. Krueger et al. (2017) – Soil Science Society of America Journal (link)

Monitoring agricultural drought using soil moisture information

- Data from monitoring networks in OK and TX
- Soil moisture anomalies strongly correlated with crop yields (r > 0.6)
- Soil moisture conditions show predictive potential 3-6 months before harvest

Average (black line) and standard deviation (shaded) of the correlation coefficients between soil moisture anomalies and crop yields.

Forecasting streamflow using soil moisture information

Anomalies in annual precipitation, annual lake inflow, and soil volumetric water content (VWC) on Jan. 1 for Lake Altus-Lugert watershed.

Marena, Oklahoma, In Situ Sensor Testbed (MOISST)

EPSCoR sponsored MOISST workshops

2018 MOISST Workshop Information http://snr.unl.edu/research/projects/MOISST/workshop2018.asp

Acknowledgments

- Supported by:
 - NSF EPSCoR (Grant No. OIA-1301789)
 - NASA Terrestrial Hydrology Program
 - Joint Fire Science Program
 - Oklahoma Water Resources Center
 - Oklahoma Agricultural Experiment Station
 - USGS
 - South Central Climate Science Center
- Partners include:
 - OSU Soil Physics group
 - NSF EPSCoR team
 - Mike Cosh
 - MOISST collaborators
 - JFSP project team
 - Oklahoma Mesonet staff
 - Oklahoma Water Resources Board staff

http://soilmoisture.okstate.edu/

http://soilphysics.okstate.edu/

Thank you!

tyson.ochsner@okstate.edu

http://soilphysics.okstate.edu/ http://soilmoisture.okstate.edu/ http://canopeoapp.com/

Cimarron River Transect Study

Soil moisture transects

- Persistent low soil moisture for western third
- Maximum variability after rainfall on eastern half

Using soil texture information

25-cm Sand Content

estimated from USDA-NRCS SSURGO

Using radar-based precipitation

25-cm Antecedent Precipitation Index

valid 12:00 AM April 23, 2018 CST

Creating a regression model for the available observations

Kriging the model residuals (errors)

25-cm Kriged Soil Moisture Residuals

valid 12:00 AM April 23, 2018 CST

Grassland vegetation (fuel) moisture content

- Two growing seasons of soil and vegetation moisture measurements
- Fuel moisture exhibits a threshold-type dependency on soil moisture.

Fraction of available water capacity (FAW) measured at 0-40 cm for Live Fuel Moisture Content Classes during the growing season for tallgrass prairie in Oklahoma from 2012-2013.