#### FROM THE MARKET TO THE FIELD: THE IMPACT OF AGRICULTURAL AND ENERGY LINKAGES ON FARMERS' CHOICES

Silvia Secchi

Associate Professor, Geography & Environmental Resources Director, Environmental Resources & Policy Ph.D. Program Southern Illinois University Carbondale ssecchi@siu.edu

#### Acknowledgements

- This work is supported by:
  - USDA National Institute of Food and Agriculture/Agriculture and Food Research Initiative, Award number 2016-67024-24755.
- It builds on work previously supported by
  - A EPA Region 7 Cooperative Agreement
  - USDA ERS Cooperative Agreements 58-6000-0-0056 and 58-6000-9-0083.
  - USDA National Institute of Food and Agriculture/Agriculture and Food Research Initiative, Award number 2010-65400-20434.
- Collaborators
  - Rebecca Dodder, EPA ORD
  - Amani Elobeid, Iowa State University
  - P. Ozge Kaplan, EPA ORD
  - Lyubov Kurkalova, NCA&T State University
  - Simla Tokgoz, IFPRI

#### Integrated economic-environmental modeling

| Table 2 – Historical and projected land use on the basis of corn prices. |                   |                                    |                                    |                                    |  |  |  |  |
|--------------------------------------------------------------------------|-------------------|------------------------------------|------------------------------------|------------------------------------|--|--|--|--|
| Rotation area                                                            | Historic baseline | Corn price 108 \$ Mg <sup>-1</sup> | Corn price 142 \$ Mg <sup>-1</sup> | Corn price 167 \$ Mg <sup>-1</sup> |  |  |  |  |
| Intensive margin – current cropland (km²)                                |                   |                                    |                                    |                                    |  |  |  |  |
| Corn-soybean                                                             | 64,389            | 92,066                             | 38,618                             | 10,717                             |  |  |  |  |
| Corn-corn-soybean                                                        | 12,944            | 0                                  | 42,784                             | 13,974                             |  |  |  |  |
| Continuous corn                                                          | 2556              | 0                                  | 10,664                             | 67,375                             |  |  |  |  |
| Extensive margin – current CRP land (km²)                                |                   |                                    |                                    |                                    |  |  |  |  |
| CRP                                                                      | 7087              | 4189                               | 2492                               | 2027                               |  |  |  |  |
| Corn-soybean                                                             | 0                 | 2898                               | 2952                               | 1050                               |  |  |  |  |
| Corn-corn-soybean                                                        | 0                 | 0                                  | 1501                               | 1561                               |  |  |  |  |
| Continuous corn                                                          | 0                 | 0                                  | 142                                | 2449                               |  |  |  |  |

| Table 3 – Historical and projected environmental indicators on the basis of corn prices. |                   |                                    |                                    |                          |  |  |  |  |
|------------------------------------------------------------------------------------------|-------------------|------------------------------------|------------------------------------|--------------------------|--|--|--|--|
|                                                                                          | Historic baseline | Corn price 108 \$ Mg <sup>-1</sup> | Corn price 142 \$ Mg <sup>-1</sup> | Corn price 167 $Mg^{-1}$ |  |  |  |  |
| Intensive margin – current cropland                                                      |                   |                                    |                                    |                          |  |  |  |  |
| Sediment losses (Mg)                                                                     | 20,041,671        | 36,413,102                         | 45,601,316                         | 64,457,979               |  |  |  |  |
| Nitrogen losses (Mg)                                                                     | 545,136           | 609,732                            | 741,057                            | 934,464                  |  |  |  |  |
| Phosphorus losses (Mg)                                                                   | 19,120            | 28,020                             | 31,680                             | 34,546                   |  |  |  |  |
| Soil carbon (Mg)                                                                         | 2,020,321,455     | 1,978,707,457                      | 1,956,628,896                      | 1,935,990,115            |  |  |  |  |
| Extensive margin – current CRP land                                                      |                   |                                    |                                    |                          |  |  |  |  |
| Sediment losses (Mg)                                                                     | 1,023,826         | 1,646,552                          | 3,579,939                          | 6,633,448                |  |  |  |  |
| Nitrogen losses (Mg)                                                                     | 6794              | 20,861                             | 39,096                             | 57,428                   |  |  |  |  |
| Phosphorus losses (Mg)                                                                   | 533               | 1167                               | 2175                               | 2862                     |  |  |  |  |
| Soil carbon (Mg)                                                                         | 120,400,225       | 113,303,996                        | 108,297,841                        | 104,843,115              |  |  |  |  |



Projected rotations on the intensive and extensive margin at corn prices of 167 \$ Mg<sup>-1</sup>

Continuous Corn Corn Soybean Corn Corn Soybean CRP

Secchi et al. 2011 - Biomass & Bioenergy



#### Why is the link increasingly important?

- The historical approach had difficulty capturing the impact of biofuels on supply of and demand for energy substitutes and the resulting feedback to agricultural markets.
  - Biofuel production can move energy prices, and if higher biofuel volumes lower fuel prices, two countervailing effects occur.
    - Lower fuel prices reduce the cost of agricultural production (input cost reduction effect)
    - Lower fuel prices make biofuels less competitive (substitute output price reduction effect).
- The net impact will depend on the relative size of each of these effects.



Energy prices

Crop prices



Crop prices

#### Energy prices



Energy prices

Crop prices

## Modeling logic differences

- Optimization models like MARKAL are prescriptive: given assumptions about the energy system, MARKAL determines what a rational planner seeking to minimize total system costs should do over the model's time horizon.
  - MARKAL uses a less conservative time horizon (2050), compared to CARD (2024.
- The different modeling logics reflect both the different historical rationales for the two models and the different structures of the energy and agricultural industries.
- The energy sector relies very heavily on physical capital, and is sensitive to new technologies. Given public support of new technologies has long term ramifications, an optimization approach and long-term horizons are helpful for policy planning.

#### Macro-level Model Linkages

- The linking of the two modeling systems allows for the endogenizing of variables that would otherwise be exogenous to each model.
- Variables such as ethanol and biodiesel production are endogenous in both models and remain so during iterations.
- The models are iteratively updated to achieve convergence on ethanol and biodiesel production.

#### Macro-level Model Linkages

- The linking of the two macro-level models was performed in two steps:
  - 1) Data and information exchanges included coordination of historical data on agricultural crops and biofuels in the CARD model database, coordination of ethanol production costs, ethanol volumes, energy prices, and technological assumptions such as conversion rates from the MARKAL database, and biofuel by-product yield rates from the CARD model.
  - 2) A "joint" baseline was created by linking the models. As the feedback between the models was endogenized, the joint baseline was different from the two individual baselines.

#### Macro-level Model Linkages

- Linking the CARD and MARKAL models to allow feedback between the agricultural and energy sectors includes harmonizing data inputs and assumptions in both modeling systems.
- Variables that MARKAL treats as exogenous inputs but are endogenous variables to CARD include corn and soybean production, and input and output prices in the ag sector.
- Variables that CARD treats as exogenous but are endogenous variables to MARKAL are production costs for the corn ethanol market, and energy prices.

#### Pre- and Post-Linkage Results

|                              | Initial Baseline |          |       | Post-linkage (Converged)<br>Baseline |          |       |  |
|------------------------------|------------------|----------|-------|--------------------------------------|----------|-------|--|
|                              | Corn             | Soybeans | Wheat | Corn                                 | Soybeans | Wheat |  |
| Planted area (M ac)          | 114              | 68       | 61    | 95                                   | 74       | 59    |  |
|                              |                  |          |       |                                      |          |       |  |
| Production (M bu)            | 18,916           | 3,164    | 2,358 | 15,818                               | 3,349    | 2,417 |  |
|                              |                  |          |       |                                      |          |       |  |
| Domestic use (M bu)          | 16,259           | 2,441    | 1,356 | 13,164                               | 2,416    | 1,327 |  |
| Feed & residual <sup>a</sup> | 6,155            | 2,247    | 214   | 5,389                                | 2,234    | 168   |  |
| Fuel alcohol                 | 8,579            |          |       | 6,320                                |          |       |  |
| HFCS                         | 581              |          |       | 535                                  |          |       |  |
| Food & other                 | 915              |          | 1,056 | 896                                  |          | 1,075 |  |
| Seed                         | 28               | 194      | 86    | 24                                   | 183      | 84    |  |
| Exports (M bu)               | 2,605            | 731      | 1,117 | 2,662                                | 939      | 1,203 |  |
|                              |                  |          |       |                                      |          |       |  |
| Ending stocks (M bu)         | 1,212            | 221      | 332   | 1,493                                | 250      | 631   |  |
| Farm price (\$/bu)           | 4.37             | 10.81    | 5.86  | 4.28                                 | 9.96     | 6.37  |  |
|                              |                  |          |       |                                      |          |       |  |
| Var. prod.n costs (\$/ac)    | 301              | 140      | 126   | 320                                  | 141      | 134   |  |

Elobeid et al. 2013 Environmental Modeling & Software

#### Pre- and post-linkage results

- The integrated models produced different results than the individual models.
- Endogenizing the exogenous variables by linking the models is critical by providing important feedbacks between the two systems.
- Keeping the energy sector exogenous in the CARD model tends to overestimate the ethanol supply and demand levels as well as ethanol prices.
- Consequently, there is higher demand for corn as a feedstock for ethanol production, which increases corn prices and bids land away from competing crops.

#### Scenario analysis

Oil and gas price shock

- Crop production affected by the changes in energy prices
  - diesel fuel to power planting and harvesting machinery,
  - LP gas to dry harvested crops,
  - nitrogen fertilizer (derived from natural gas) to supply crop nutrients
- Increases in energy prices act as fertilizer, fuel and LP gas taxes, reducing the net returns to farming for energy and/or fertilizer intensive crops
- Impact on conservation tillage

# Scenario analysis - baseline versus scenarios for 2025/2026.

|                                                       | Baseline | High energy<br>prices<br>scenario | % change |
|-------------------------------------------------------|----------|-----------------------------------|----------|
| Corn M acres                                          | 92.5     | 95.7                              | 3.46     |
| Soybeans M acres                                      | 73.5     | 72.0                              | -2.16    |
| Corn price \$/bu                                      | 4.76     | 4.99                              | 4.74     |
| Soybean price \$/bu                                   | 11.07    | 11.21                             | 1.29     |
| Variable production<br>expenditures<br>Corn \$/ac     | 405.21   | 416.30                            | 2.74     |
| Variable production<br>expenditures<br>Soybeans \$/ac | 165.36   | 166.02                            | 0.40     |
| Nitrogen fertilizer price<br>PPI (90-92=100)          | 399.83   | 434.86                            | 8.76     |

Dodder et al. 2015 Energy Economics

### Land Based carbon offsets

#### Rationale:

- A relatively low cost climate mitigation strategy,
- Known technology bridge role
- Potentially high co-benefits
- Payments for Continuous No Till (CNT) are appropriate for heavy production regions such as the Corn Belt.
  - No till can be monitored with remote sensing

### Crop choice modeling

- Soil productivity is measured by the Corn Suitability Rating (CSR), an index from 0 to 100.
- Environmental vulnerability of cropland is measured by the HEL code.
  - USDA Natural Resource Conservation Service classifies cropland as HEL if the potential of a soil to erode, considering the physical and chemical properties of the soil and climatic conditions where it is located, is eight times or more the rate at which the soil can sustain productivity.
- While most of Iowa cropland is of high productivity, most of the cropped HEL is of medium productivity.
- 2009 land use baseline

#### Crop choice modeling



## Crop choice modeling



#### Assumptions

- Farmers participate in the offset program if it offers as much as the crop rotation that maximizes their net returns
  - N application rate is variable
  - Optimal N depends on soil productivity, prices and yield drags
  - 6 year contracts

- For each tillage system *T* used (conventional-1, mulch-2, or no-till-3), the farmer maximizes over the nitrogen rate N
- $\max_{N} \left( P_{2020}^{C} Y_{2020}^{C} \overline{F}_{2020}^{C,T} P_{2020}^{N} N_{2020} \right) = \pi_{2020}^{C,T}$

• 
$$Y_{2020}^C = \alpha_C \tau_k \left( \beta_{0,k}^T + \beta_{1,k}^T N_{2020} + \beta_{2,k}^T N_{2020}^2 \right)$$

- Y<sup>C</sup> is the corn yield,
- The subscript k stands for the crop grown in previous year: corn (k = C) or soybeans (k = S),
- $\alpha_c$  is the parcel-specific corn yield multiplier,
- $\tau_k$  is the previous crop- and tillage-specific corn yield multiplier,
- $\beta_{0,k}^T$ ,  $\beta_{1,k}^T$  and  $\beta_{2,k}^T$  are the previous-crop and tillage specific parameters of the yield function
- $\overline{F}_{2020}^{C}$  are the fixed costs of production for corn for that year

 For soybeans, there is no maximization since there is no nitrogen application, so profit is

• 
$$\pi_{2020}^{S,T} = P_{2020}^S Y_{2020}^S - \overline{F}_{2020}^{S,T}$$

- $Y_{2020}^S = \alpha_S$
- *Y<sup>S</sup>* is the soybean yield,
- $\alpha_s$  is the parcel-specific soybean yield multiplier,
- $\overline{F}_{2020}^{C,T}$  are the costs of production for soy for that year for tillage system T

- Since farmers are comparing rotations, we find the one that maximizes the (expected) PV of profits over six years
- Rotation and management choices are:
  - CC conventional
  - CS conventional
  - CCS conventional
  - CS low till
  - CS mix till
- These are the most common rotations in the state by far
- One off ex ante choice on the basis of expected prices no renegotiation allowed
  - Penalties for early withdrawal assumed high
  - Monitoring (e.g. via remote sensing) assumed widespread and cheap

• For CC conventional the PV of profits is:

• 
$$\Pi^{CC,1} = \pi_{2020}^{C,1} + \frac{\pi_{2021}^{C,1}}{(1+r)} + \frac{\pi_{2022}^{C,1}}{(1+r)^2} + \frac{\pi_{2023}^{C,1}}{(1+r)^3} + \frac{\pi_{2024}^{C,1}}{(1+r)^4} + \frac{\pi_{2025}^{C,1}}{(1+r)^5}$$

• For CS conventional:

• 
$$\Pi^{CS,1} = \pi^{C,1}_{2020} + \frac{\pi^{S,1}_{2021}}{(1+r)} + \frac{\pi^{C,1}_{2022}}{(1+r)^2} + \frac{\pi^{S,1}_{2023}}{(1+r)^3} + \frac{\pi^{C,1}_{2024}}{(1+r)^4} + \frac{\pi^{S,1}_{2025}}{(1+r)^5}$$

Inputs from the coordinated CARD-MARKAL modeling system

• 
$$\max_{N} \left( P_{2020}^{C} Y_{2020}^{C} - \overline{F}_{2020}^{C} - P_{2020}^{N} N_{2020} \right) = \pi_{2020}^{C,T}$$
  
• 
$$\pi_{2020}^{S,T} = P_{2020}^{C} Y_{2020}^{S} - \overline{F}_{2020}^{S,T}$$

#### Optimization problem & carbon offsets

 Compare the rotation that maximizes the (expected) PV of profits over six years with the profit from CS low till plus offsets to construct conservation tillage supply curves

Compare

- $Max (\Pi^{CC,1}, \Pi^{CS,1}, \Pi^{SC,1} \dots \Pi^{CCS,1} \dots \Pi^{CS,4})$
- With CS no till plus the payment  $\omega$  :

• 
$$\Pi^{CS,3} = \left(\pi_{2020}^{C,3} + \omega\right) + \frac{\left(\pi_{2021}^{S,3} + \omega\right)}{(1+r)} + \frac{\left(\pi_{2022}^{C,3} + \omega\right)}{(1+r)^2} + \frac{\left(\pi_{2023}^{S,3} + \omega\right)}{(1+r)^3} + \frac{\left(\pi_{2024}^{C,3} + \omega\right)}{(1+r)^4} + \frac{\left(\pi_{2025}^{S,3} + \omega\right)}{(1+r)^5}$$

Classic "practice" approach

#### **Baseline CNT adoption**

- Approximately 35.5 % of U.S. cropland planted to eight major crops had no till operations in 2009
- However, when looking at multiple years of no-till, just 13% of acres in the Upper Mississippi River Basin were in no-till every year over the 3-year survey period - Horowitz et al. (2010), based on NRI-CEAP surveys from 2003-2006

#### **Baseline CNT adoption**

- Little information on conservation tillage adoption
  - Small samples

thousand ac

- No long term recall questions
- No annual surveys
- Can only infer continuous no till adoption levels



\*- The estimate is statistically unreliable due to the combination of a low sample size and high sampling error.

\*\* - The estimate is a combination of two estimates, with at least one of the estimates categorized as \*.

NA - Estimate does not comply with ERS disclosure limitation practices, is not available, or is not applicable..

#### Randomizing the model

- To capture the variability of costs faced by farmers, the differential costs of no till were randomized.
  - Range of +/-\$40 from the deterministic costs
  - Chosen to mimic historical land use/ calibrate to the data
  - Randomization by crop, land productivity and year
  - $\max_{N} \left( P_{2020}^{C} Y_{2020}^{C} \bar{F}_{2020}^{C,3} P_{2020}^{N} N_{2020} \gamma_{2020}^{C} \right) = \pi_{2020}^{C,3}$

• 
$$\pi_{2020}^{S,3} = P_{2020}^C Y_{2020}^S - \overline{F}_{2020}^{S,3} - \gamma_{2020}^S$$

 Each land productivity class (100), crop (2) and year (6) simulated 100 times – 120,000 simulations

## Randomizing the model

|                                         | CC<br>thousand<br>ac | CS no till<br>thousand<br>ac | CS mixed till<br>thousand<br>ac | CS mulch till<br>thousand<br>ac |
|-----------------------------------------|----------------------|------------------------------|---------------------------------|---------------------------------|
| 2006-2011<br>historical<br>prices       | 2,455                | 150                          | 17                              | 21,037                          |
| 2020-2025<br>baseline<br>prices         | 3,377                | 11                           | 0                               | 20,271                          |
| 2020-2025<br>higher<br>energy<br>prices | 4,832                | 4                            | 0                               | 18,823                          |

## Supply curves



#### **Conservation Compliance**

- To receive subsidized crop insurance, farmers growing crops in Highly Erodible Land (HEL) have to follow conservation compliance practices, no till being one of the primary practices
- Very contentious part of the farm bill
- Not clear at this point if HEL land cropped under no till will be eligible for land-based offsets or if this will be considered double dipping

#### **Conservation Compliance**

- Conservation compliance not well enforced.
- In 2003, a GAO's nationwide survey found that:
  - Almost half of NRCS' field offices do not implement the conservation provisions as required
  - Sample selection bias NRCS disproportionately emphasizes tracts with low noncompliance, such as permanent rangelands
  - FSA often waives noncompliance determinations without adequate justification

#### **Conservation Compliance**

- Two possible program configurations:
  - Payments exclude HEL CC stays in force
  - Payments to HEL only targeting if CC disappears

## Supply curves w/o HEL



## Supply curves HEL only



#### Supply curves



#### Program costs



# How inefficient are practice-based programs?

|                   | Historical prices               |                            |     | Baseline                        |                            |     | High energy prices              |                            |     |
|-------------------|---------------------------------|----------------------------|-----|---------------------------------|----------------------------|-----|---------------------------------|----------------------------|-----|
| Payment<br>per ac | Total<br>payments<br>\$ million | Total<br>WTA<br>\$ million |     | Total<br>payments<br>\$ million | Total<br>WTA<br>\$ million |     | Total<br>payments<br>\$ million | Total<br>WTA<br>\$ million |     |
| No policy         | 0                               | 0                          |     | 0                               | 0                          |     | 0                               | 0                          |     |
| 10                | 28                              | 21                         | 73% | 56                              | 29                         | 51% | 55                              | 28                         | 51% |
| 12                | 50                              | 33                         | 67% | 116                             | 54                         | 47% | 114                             | 54                         | 48% |
| 14                | 80                              | 50                         | 62% | 199                             | 90                         | 45% | 190                             | 88                         | 46% |
| 16                | 118                             | 70                         | 59% | 288                             | 132                        | 46% | 280                             | 130                        | 46% |
| 18                | 173                             | 96                         | 56% | 377                             | 178                        | 47% | 364                             | 174                        | 48% |
| 20                | 234                             | 127                        | 54% | 451                             | 225                        | 50% | 443                             | 220                        | 50% |

#### How much carbon is that?

|                            | Carbon<br>sequestered<br>ton/ac | Annual cost<br>per ton of<br>carbon<br>sequestered | Tons of<br>carbon<br>sequestered<br>millions | Additional<br>acres<br>enrolled<br>'000s | PV of the cost<br>per ton of<br>carbon over<br>20 years | PV of the cost<br>per ton of<br>carbon over 6<br>years |
|----------------------------|---------------------------------|----------------------------------------------------|----------------------------------------------|------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|
| Historic                   | 2                               | 2.33                                               | 6                                            | 2,599                                    | 62                                                      | 25                                                     |
|                            | 4                               | 1.17                                               | 12                                           |                                          | 31                                                      | 13                                                     |
|                            | 7                               | 0.78                                               | 17                                           |                                          | 21                                                      | 8                                                      |
| Bsl                        | 2                               | 2.25                                               | 1                                            | 490                                      | 60                                                      | 24                                                     |
|                            | 4                               | 1.13                                               | 2                                            |                                          | 30                                                      | 12                                                     |
|                            | 7                               | 0.75                                               | 3                                            |                                          | 20                                                      | 8                                                      |
| Higher<br>energy<br>prices | 2                               | 2.22                                               | 1                                            | 521                                      | 59                                                      | 24                                                     |
|                            | 4                               | 1.11                                               | 2                                            |                                          | 30                                                      | 12                                                     |
|                            | 7                               | 0.74                                               | 3                                            |                                          | 20                                                      | 8                                                      |

#### Extensions in the works

- Performance vs. practice based payments using EPIC to model carbon sequestration levels
- CSR is an Iowa only soil productivity measure we can extend this to the whole country using the NCCPI



#### Conclusions

- Program configuration matters linkages with CC provisions and commodity title of the farm bill crucial to the results
- Since opportunities costs are key, the linkages with the CARD-MARKAL prices give more realistic foundation to scenario analysis
- The "process" aspects of this project are transferable
  - Strengths and weakness of single models
  - Policy relevant and realistic research questions