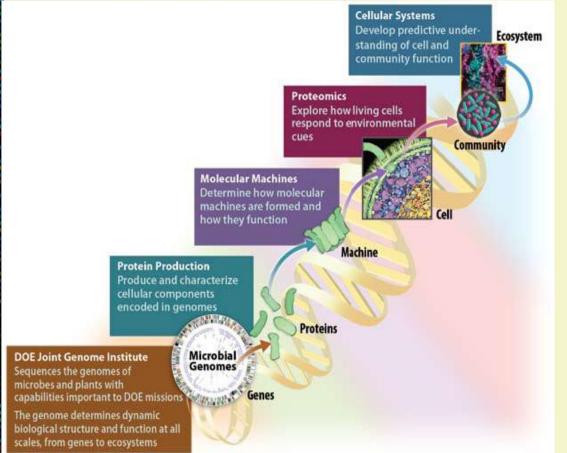

Center for Land Use, Climate Change and Sustainability (CLCS)

Kai Xue for Jizhong (Joe) Zhou University of Oklahoma

November 17, 2011 Stillwater, OK



Scientific Goal

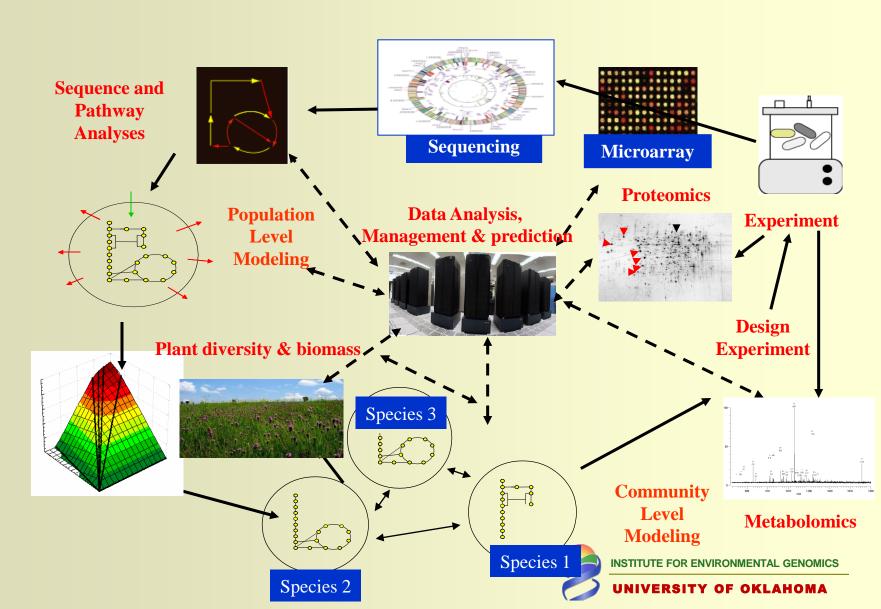
To understand ecological consequences to land use practices/changes in scenarios of climate change;

To evaluate sustainability of managements in response to locally, regionally and globally environmental changes.

- Linking genomics to life
- Linking biodiversity to ecosystem functioning
- Impacts and prediction of global changes on ecosystem services

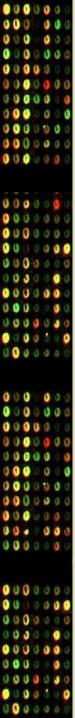
Some key scientific questions

- How do locally, regionally and globally environmental changes (land practices/changes and climate changes) affect plant and microbial community composition, structure, and ecosystem functioning?
- Are there linkages among aboveground plant diversity, belowground microbial diversity and ecosystem functions? If so, how do those environmental changes impact such linkages?
- What is the network interaction in a ecosystem between microbes and plants, and among community members within a plant or microbial community? How do those environmental changes affect such interactions?
- How can information be scaled from molecule to cell, population, community, and ecosystem for understanding ecosystem behaviors?


Available facilities and approaches

- Experimental sites related to warming, fertilization, grass fire, and greenhouse gas studies;
- GeoChip technologies and facilities;
- High throughput sequencing technologies and facilities;
- Metatranscriptomics/RNA-Seq, metaproteomics and metametabolomics;
- High throughput computation;
- Data assimilation and modeling.

Integrative approaches to address big frontier scientific questions


Scientific objectives/subprojects

- Subproject 1. (Production). Understanding the effects of plant/microbial diversity on feedstock/crop production and ecosystem functional processes.
 - LIHD (Low Input High Diversity), productivity, managements
 - Soil C/N dynamics, greenhouse gases
 - Microbial community structure, GeoChip, stable isotope probing
- Subproject 2. (Sustainability) Understanding the effects of global changes on feedstock/agricultural production and sustainability
 - Interactive effects: Clipping, CO2, warming, precipitation
 - Plant, microbial dynamics, greenhouse gases
- Subproject 3. (Rhizosphere Community Genomics) Metagenomic analysis of microbial communities for plant-microbe interactions
 - Microbial isolation, Community sequencing, GeoChip development
- Subproject 4 (Systems biology and ecology) Developing integrated models to scale information across different organization levels towards predictive understanding of production and sustainability

Why EPSCoR?

- Fundamental enough to be interesting to NSF
- Our strengths
 - Pioneers in genomics technology development (IEG), genome sequencing, global change ecology, and gasification technologies
 - Leadership in functional genomics, leaders in plant genomics, switchgrass studies

Significance & Deliveries

- Advanced scientific understanding & knowledge on frontier biological questions
- Central facilities
 - Experimental field facility for long-term studies on biofuel plant diversity and plant-microbe interactions related.
 - Experimental facility for integrative studies of global changes, ecosystem sciences and bioenergy
 - Laboratory facility for proteomics/metabolomics
 - System biology center: high throughput and computational center for dealing large scale of data analysis in genomics, ecology, and global changes
- Scientific teams and expertise at OK:
 - Integrative team to know how to work together
 - Core expertise in interdisciplinary sciences
 - Many postdocs, graduate, undergraduate and K12 students will be trained
 - Several new faculty across different fields will be supported

Outreach: broader impacts

- 1. Graduate student and postdoctoral training.
- 2. Undergraduate science education and K-12 students and educators.
- 3. Enhanced diversity.
- 4. Teaching.
- 5. International Conferences and workshops.
- 6. National Policy on Climate Change and bioenergy.
- 7. Web site

Projected Sustainable Funding

- NSF National Ecological Observatory Network (NEON) program
 - A major funding mechanism to support ecological and environmental research in the next 30-50 years.
 - Covers biodiversity, biogeochemical cycles, and global change, supported by NEON.
 - Could be a central facility to be supported by NEON.
 - GeoChip highlighted by NEON
 - NEON Workshop on data simulation organized by Dr. Luo
- DOE global change programs
 - Direction change to multifactor experiments, great opportunity
 - Dr. Luo receives significant funding from these program
- DOE Genomics:GTL program:
 - Major funding program for basic research in bioenergy
 - Dr Zhou is very successful in receiving funding from this program

Potential team members

OU

- <u>Jizhong Zhou</u>: functional genomics, genomics technology, microbial ecology
- <u>Yiqi Luo</u>: theoretical ecology, and modeling, simulation and prediction
- Ralph Tanner: Microbial physiology of gasification
- <u>Joseph Suflita</u>: Microbial physiology, metabolites
- <u>Bradley Stephenson</u>: Microbial ecology and genomics
- <u>Lee Krumholtz</u>: Microbial ecology
- Zhili He: Bioinformatics, microbial genomics
- <u>Bruce Roe</u>: Genome sequencing
- Mark Nanny: Metabolomics
- S. Lakshmivarahan: High throughput computing

OSU

- <u>Michael Palmer</u>: Plant biodiversity
- Babu Fathepure: Microbiology
- Mostafa Elshahed: Microbiology
- Michael Anderson: soil science
- <u>Shiping Deng</u>: soil science
- <u>Yanqi Wu</u>: Plant genetics

Noble Foundation

- Rick Dixon: Plant genomics
- Michael Udvardi: N fixation
- Lloyd Sumner: Metabolomics
- Xiaoqiang Wang: Plant genomics

