Bioinformatics and Computational Biology

(Opportunities & Challenges to solve complex problems)

Rakesh Kaundal

Bioinformatics & Computational Biology Laboratory

(http://bic.okstate.edu/)

Department of Biochemistry & Molecular Biology

Bioinformatics

Why it's useful...

- All of the information needed to build an organism is contained in its DNA. If we could understand it, we would know how life works.
 - Preventing and curing diseases like cancer (which is caused by mutations in DNA) and inherited diseases.
 - Curing infectious diseases (everything from AIDS and malaria to the common cold). If we understand how a microorganism works, we can figure out how to block it.
 - Understanding genetic and evolutionary relationships between species
 - Understanding genetic relationships between humans.
 Projects exist to understand human genetic diversity
 - Similarly, other Eukaryotes are being sequenced including plants, e.g. to understand plant diseases, their tolerance under stress conditions etc.
 - Prokaryotes, Metagenome sequencing......

Resistant

Susceptible

Abiotic stress

Large-scale sequence analysis

(Processing and Assembly)

Data Processing (e.g. EST to Unigene):

- EST cleaning (vector, adapter seqs etc.)
- Assembly (Tentative Consensus, Singletons)
- Unigenes
- Annotation

Large-scale sequence analysis

(Annotation: adding biological information to sequence)

- Annotation by homology (BLAST)
 - requires a large, well annotated database of protein / nucleotide sequences
- Annotation by sequence composition
 - simple statistical/mathematical methods
- Annotation by sequence features, profiles or motifs (InterProScan, PFAM)
 - requires sophisticated sequence analysis tools
- Annotation by Artificial Intelligence
 - Identify 'known' from the 'unknowns' based on training the features from known samples
 - computational tools for prediction

What if there is No homology in the reference database or NO HITS? (most of the time, this is the case.....)

Computational Intelligence

(offshoot of Artificial Intelligence)

- <u>Machine Learning</u>: an iterative *process* where a computer can learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks T, as measured by P, improves with experience.
 - Artificial Neural Networks (ANN)
 - Self-Organized Maps (SOMs)
 - Bayesian statistics
 - Decision tree learning
 - Support Vector Machines (SVM)

Modeling of Biological Systems

'Omics' technologies

Artificial Intelligence in Bioinformatics

Thank you for your kind attention!

http://bic.okstate.edu/ or http://biochemistry.okstate.edu/