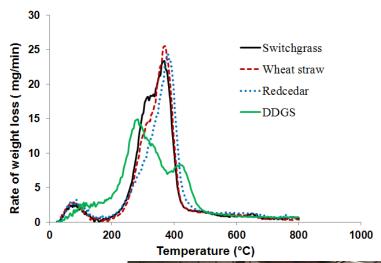


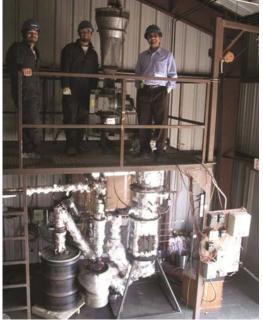
Cleaning biomass-generated syngas: is biochar a cheaper alternative to expensive catalysts?

Ajay Kumar Oklahoma State University

Biofuels through Thermochemical Conversions

Current Activities


Biomass Characterization


- All biomass are <u>not</u> created equal.
- Effects of biomass properties on products must be investigated to utilize diverse feedstocks.

Gasification

- Improved reactor design is needed to use low-density biomass.
- Optimization of operating conditions is needed through
 - Fluidization
 - Steam addition
 - Modeling of reaction kinetics

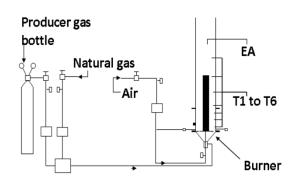
Biomass thermal degradation

Current Activities

Syngas Conditioning

 Biochar-based catalysts and oilbased wet scrubbing system has potential to drastically reduce cost of syngas cleaning.

Catalyst	Toluene removal efficiency (%)			
Biochar	86.69° ± 3.59			
Activated carbon	91.60 ^b ± 1.29			
Acidic surface activated carbon	97.56 ^a ± 0.99			


Biochar Production and Utilization

- Biochar properties are influenced of biomass and gasification conditions.
- To find high-value utilization of biochar, its properties must be investigated.

Suited graves chair

Biopower

 Syngas co-firing with natural gas can reduce carbon and other emissions associated with natural gas.

Syngas Contaminants

NH₃

- Poison catalysts
- Precursors for NOx and photochemic al smog
- Promote corrosion
 - •Dolomite or Ni/Fe based Catalyst
 - Mixed metal oxide catalysts
 - Scrubbers

H₂S

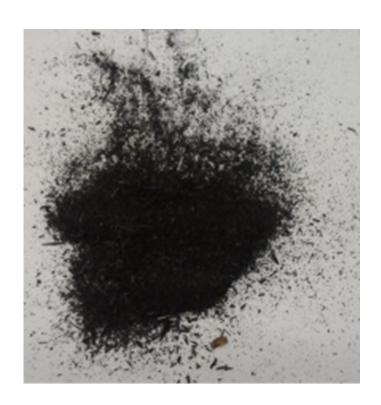
- Poison methanol production catalysts
- Tar cracking catalysts sensitivity
 - Wet ScrubbersAdsorption on metal oxides

PM

- Valve functioning
- Clog fuel lines
- Foul equipment surfaces
- Cyclonic or barrier filters
- ESP

Alkalis

- Deposition of vapors
- Fouling, Slagging and corrosivity
- Deactivate catalysts
- Product condensation
- ESP


Tars

- Handling & Disposal problems
- Plugging & Fouling
- Dehydration to form char & coke
- Wet ESP
- Ni/Dolomite/ Biochar type catalysts
- Thermal treatment

Biochar

- Biochar
 - is derived from carbon containing materials through thermochemical processes
 - Contains carbon and minerals
- What is the use of biochar?
 - Soil amendment
 - Activated carbon
 - Carbon-based materials
 - Carbon-based catalysts

Biochar Production & Utilization

- How is it produced?
 - Slow pyrolysis
 - Fast pyrolysis
 - Gasification
- Why gasification-based biochar is used here?
 - Properties of biochar through gasification is <u>not</u> wellknown.
 - Need to find high-value applications of byproduct char.

Biochar vs. commercial catalysts for cracking toluene (model tar)

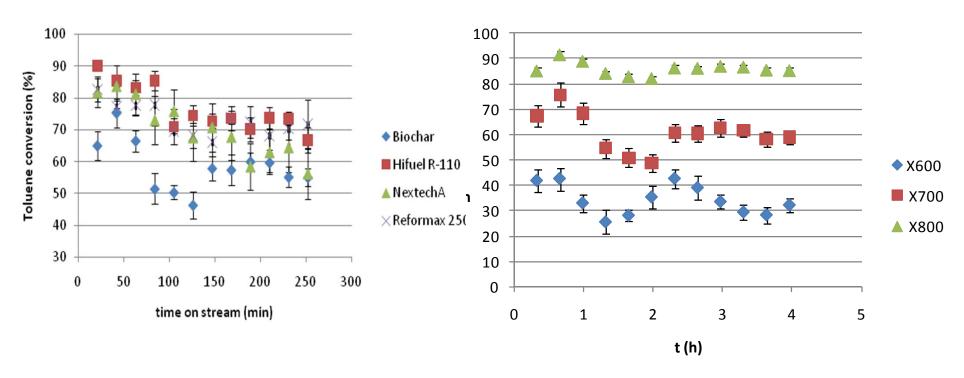
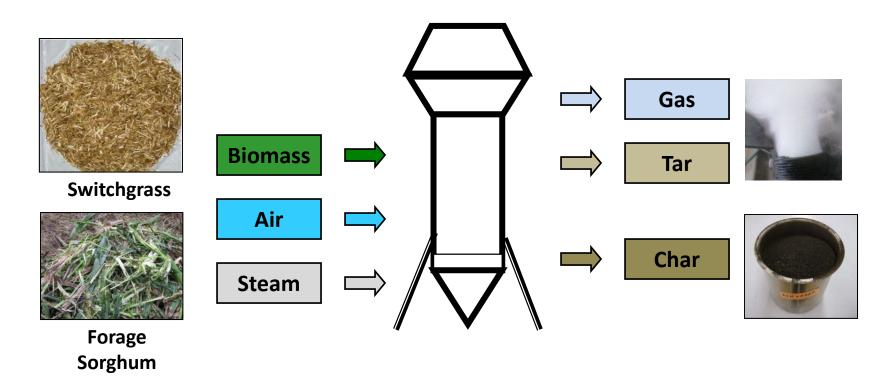
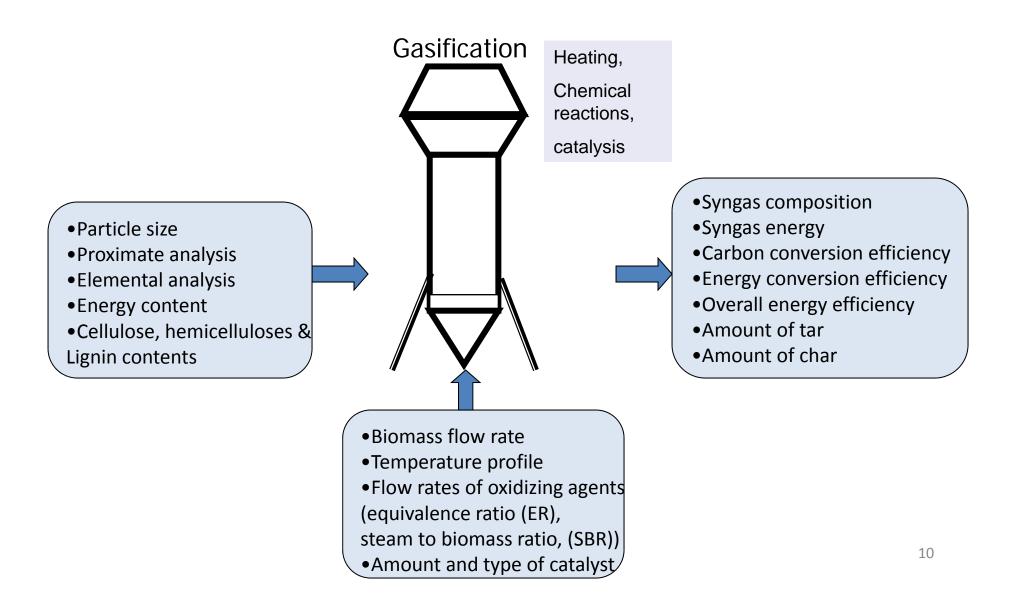



Fig: Performance of all catalysts at 700°C

Fig: Performance of char at 600, 700 and 800°C

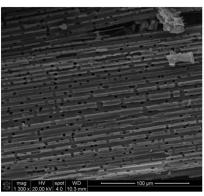

Biochar through Gasification

- Required: high temperature & oxidizing agent
- biomass + air + H_2O C (char)+ CH_4 + CO + H_2 + CO_2 + N_2 + H_2O (unreacted steam) + ash + tar

Gasification process - factors

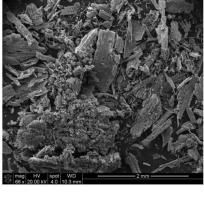
Effects of Gasifier Design



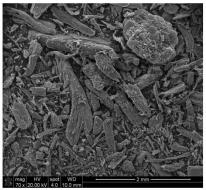

Downdraft gasifier showed larger biochar (potentially unconverted).

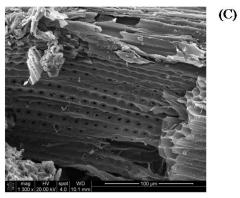
SEM of biochar

Switchgrass

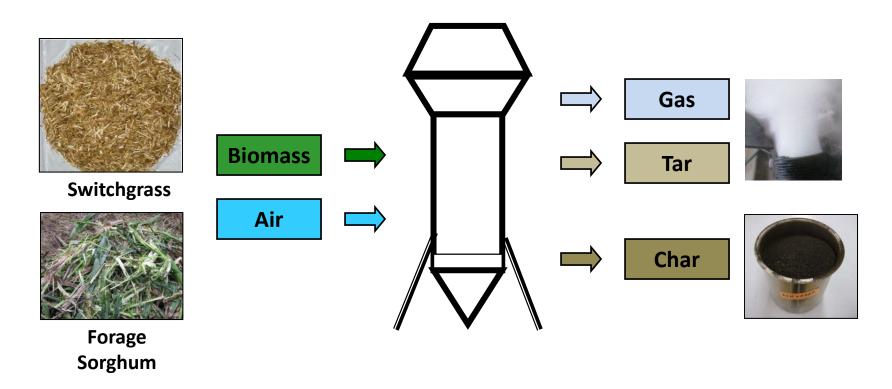


(A)


(B)

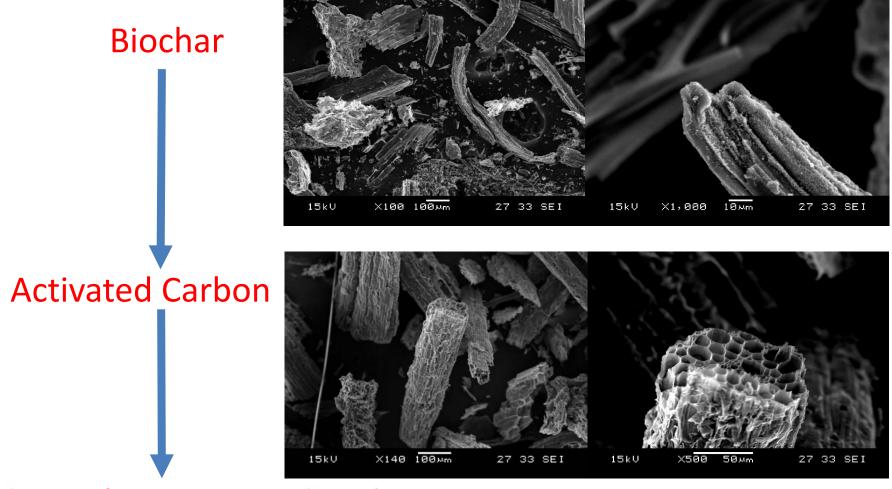

Sorghum

Red Cedar



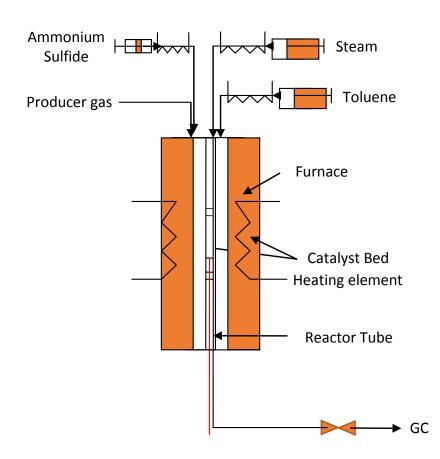
Objectives

- The objectives of this study were to:
 - synthesize carbon-based catalysts (biochar, activated carbon, and acidic surface activated carbon), and
 - 2. evaluate the effectiveness of the three novel catalysts to remove tars, ammonia, and H₂S from syngas in a fixed-bed reactor.


Biochar through Gasification

• biomass + air + $H_2O \Rightarrow C$ (char)+ CH_4 + $CO + H_2 + CO_2 + N_2 + H_2O$ (unreacted steam) + ash + tar

Catalyst Synthesis



Acidic Surface Activated Carbon

Fixed-bed reactor

Surface area (m²/g)

Method	Biochar		Activated carbon		Acidic surface activated carbon	
	Fresh	Used	Fresh	Used	Fresh	Used
Multipoint BET	16.73 ^e	6.244 ^f	703.3 ^a	695.5ª	697.1 ^a	634.0 ^b

Pore volume (cc/g)

Pore Volume Method	Biochar		Activated carbon		Acidic surface activated carbon	
	Fresh	Used	Fresh	Used	Fresh	Used
Total Pore Volume for pores with Radius less than 13.4 A° at P/P ₀ = 0.31475	0.009 ^f	0.003 ^g	0.393 ^b	0.401 ^a	0.401 ^a	0.352 ^c

Mean toluene conversion for carbonbased catalysts

		Toluene Conversion (%)				
Catalyst	Toluene with N ₂		Toluene with syngas			
	700°C	800°C	700 °C	800°C		
Biochar	78.65 ± 12.05	81.01 ± 11.83	69.18 ± 11.89	78.83 ± 4.74		
Activated Carbon	86.28 ± 7.7	91.69 ± 4.9	82.08 ± 7.73	88.55 ± 6.62		
Acidic Surface Activated Carbon	80.78 ± 7.7	92.09 ± 8.4	79.13 ± 7.78	88.14 ± 7.89		

Outlet gas concentration in syngas

Gas Syngas		Biochar		Activated Carbon		Acidic Surface Activated Carbon	
(% v/v)	700 °C	800 °C	700 °C	800 °C	700 °C	800 °C	
CO	19.3	15.64	17.55	19.7	19.9	19.6	19.29
CO ₂	16.8	17.65	16.04	15.75	15.60	16.62	17.02
H ₂	5.1	4.77	3.11	4.19	8.30	4.85	9.11
CH ₄	7.5	6.29	6.65	5.52	5.57	6.78	6.25

Ammonia

→ Activated Carbon → Acidic Surface Activated Carbon → Biochar

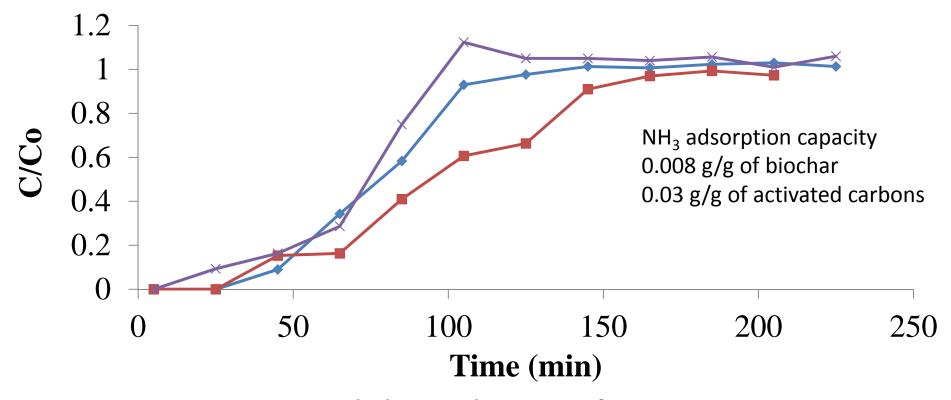


Figure: Breakthrough curve for ammonia

 C/C_0 : ratio of final outlet ammonia concentration (ppm) to inlet ammonia concentration (ppm)

H_2S

→ Activated Carbon → Acidic Surface Activated Carbon → Biochar

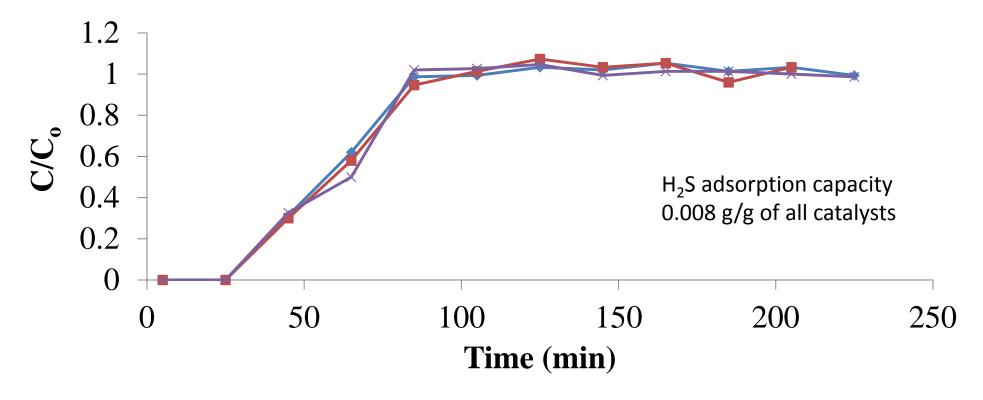


Figure: Breakthrough curve for H₂S

 C/C_0 : ratio of final outlet ammonia concentration (ppm) to inlet ammonia concentration (ppm)

Toluene removal efficiency (%) in presence of syngas with NH₃ and H₂S.

	Toluene removal efficiency (%)				
Catalyst	without NH_3 and H_2S	with NH_3 and H_2S			
Biochar	78.83 ± 4.74	$86.69^{\circ} \pm 3.59$			
Activated carbon	88.55 ± 6.62	91.60 ^b ± 1.29			
Acidic surface activated carbon	88.14 ± 7.89	97.56 ^a ± 0.99			

Conclusions

- Surface area of activated carbon (>900 m²/g) was significantly higher than that of its precursor biochar (~15 m²/g).
- Biochar, activated carbon and acidic surface activated carbon showed toluene removal efficiencies of approximately 78, 89, and 88 %, respectively in the presence of syngas at 800 °C.
- NH₃ adsorption capacities were 0.008 g NH₃/g catalyst for biochar and 0.03 g NH₃/g catalyst for activated carbon and acidic surface activated carbon.
- H₂S adsorption capacities were 0.008 g H₂S/g catalyst for all biochar-based catalysts.
- The toluene removal efficiencies in the presence of NH₄ and H₂S in the syngas.

Research Team and Sponsors

PIs:

Dr. Ajay Kumar

Dr. Krushna Patil

Dr. Raymond Huhnke

Research engineer and graduate students:

Ashokkumar Sharma, Kezhen Qian, Prakash Bhoi, Zixu Yang, Cody Collins, Madhura Sarkar, and Mohit Dobhal

Lab Managers:

Mark Gilstrap and Wayne Kiner

Financial Sponsors:

