





### Novel Solid Acid and Base Catalysts (Aim 3.1)

Approach: Solid oxide solutions

2-methyl-3-butyn-2-ol conversion as test reaction

## 2. Probing Sites and Prediction of Reactivity (Aims 3.2 and 3.3)

Concept and methodology: IR absorption coefficients Propene activation on zeolites

## 3. Catalyst-Adsorbate Interactions (Aim 3.3)

Bifunctional reactants

IR spectroscopy and calorimetry

### 4. Thermal Analysis of Switchgrass Pyrolysis (Aim 3.4)

TG-MS-FTIRS experiments

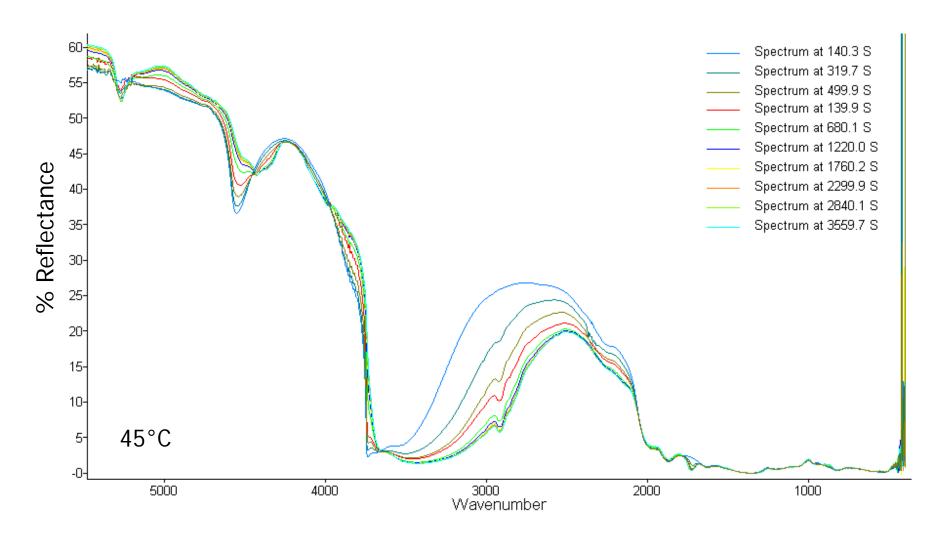
Friederike C. Jentoft

Oklahoma EPSCoR Retreat Ardmore, OK – July 14, 2010



# Catalyst-Adsorbate Interactions (Aim 3.3)

#### **Volatile pyrolysis products**


| Compound             | Switchgrass |     | Sweet sorghum |     | Corn stalk |     | Poplar |     | Cellulose |     |
|----------------------|-------------|-----|---------------|-----|------------|-----|--------|-----|-----------|-----|
|                      | Mean        | RSD | Mean          | RSD | Mean       | RSD | Mean   | RSD | Mean      | RSD |
| Formaldehyde         | 1.0         | 47  | 0.57          | 46  | 0.5        | 50  | 0.8    | 62  | 1.6       | 24  |
| Methanol             | 0.66        | 36  | 0.46          | 40  | 0.8        | 49  | 1.3    | 51  | 0.22      | 35  |
| Acetal dehyde        | 0.50        | 44  | 0.35          | 15  | 0.4        | 33  | 0.40   | 9   | 0.43      | 41  |
| Glyoxal              | 5.8         | 74  | 2.2           | 47  | 3.2        | 86  | 2.7    | 61  | 5.1       | 5   |
| Acetone              | 0.35        | 51  | 0.3           | 50  | 0.42       | 56  | 0.26   | 79  | 0.48      | 24  |
| Methylglyoxal        | 5.0         | 52  | 3.8           | 71  | 5.1        | 74  | 2.7    | 45  | 2.8       | 25  |
| Hydroxyacetaldehyde  | 14          | 36  | 14            | 53  | 12         | 63  | 12     | 37  | 7.4       | 22  |
| Acetic acid          | 2.9         | 32  | 3.6           | 85  | 5.0        | 68  | 5.2    | 56  | 0.18      | 42  |
| 3-pentanone          | 1.1         | 96  | 1.6           | 59  | 2.1        | 86  | 1.5    | 48  | 0.40      | 8   |
| Hydroxyacetone       | 2.1         | 60  | 2.2           | 83  | 3.7        | 86  | 2.4    | 88  | 0.20      | 33  |
| Acetoxy-acetaldehyde | 2.6         | 63  | 2.9           | 55  | 3.3        | 87  | 3.8    | 68  | 0.09      | 62  |
| Butandial            | 2.7         | 75  | 3.5           | 53  | 2.9        | 69  | 4.9    | 68  | n.d.      |     |
| Sum                  | 38          | 42  | 35            | 50  | 39         | 66  | 38     | 46  | 19        | 10  |

Mean values and % relative standard deviations (n = 5).

- Adsorption of hydroxyacetone on various oxides (typical catalyst supports)
- Infrared spectroscopy: investigate adsorbate structure and temperatureprogrammed desorption and reaction
- Adsorption calorimetry: differential heats of adsorption



## Hydroxyacetone Adsorption on Silica



Si-OH groups on the surface of the oxide interact with hydroxyacetone



## **NSF-MRI** Equipment

- TG-MS-FTIRS: Thermogravimetry with differential thermal analysis or differential scanning calorimetry and evolved gas analysis by mass spectrometry and FTIR spectroscopy
  - NETZSCH STA 449 F1 Jupiter / MS 403 C Aëolos / Bruker Tensor 27
  - Maximum temperature of thermobalance: 1500°C; digital resolution 0.025 μg; maximum sample load/measurement range 5 g including sample crucible

#### 2. Mixing and Reaction Calvet calorimeter

- SETARAM C80
- Resolution 0.1  $\mu$ W; temperature ambient to 300°C; various vessels for calorimetric experiments
- To be combined with Micromeritics ASAP 2020 gas dosing apparatus for measurements of differential heats of adsorption



## Thermal Analysis of Switchgrass Pyrolysis (Aim 3.4)

- CBME/OU operates two pyrolysis units, one large scale (0.5-2 kg solid feed/h) and one small scale (g/h) unit
- Large variety of switchgrass samples received from Samuel Roberts Noble Foundation
- Product distribution depends on properties of feedstock and pyrolysis conditions,
   which may vary locally because of heat and mass transfer limitations in the reactor
- Switchgrass decomposition in the TG-MS-FTIRS apparatus: small sample size in the milligram range allows for better control over the conditions than in the larger pyrolysis units
- Influence of feedstock composition, heating rate, holding temperature, and the addition of catalysts